Enigma machine

Оглавление

Цифровые шифры

В отличие от шифровки текста алфавитом и символами, здесь используются цифры. Рассказываем о способах и о том, как расшифровать цифровой код.

Двоичный код

Текстовые данные вполне можно хранить и передавать в двоичном коде. В этом случае по таблице символов (чаще всего ASCII) каждое простое число из предыдущего шага сопоставляется с буквой: 01100001 = 97 = «a», 01100010 = 98 = «b», etc

При этом важно соблюдение регистра

Расшифруйте следующее сообщение, в котором использована кириллица:

Шифр A1Z26

Это простая подстановка, где каждая буква заменена её порядковым номером в алфавите. Только нижний регистр.

Попробуйте определить, что здесь написано:

Шифрование публичным ключом

Алгоритм шифрования, применяющийся сегодня буквально во всех компьютерных системах. Есть два ключа: открытый и секретный. Открытый ключ — это большое число, имеющее только два делителя, помимо единицы и самого себя. Эти два делителя являются секретным ключом, и при перемножении дают публичный ключ. Например, публичный ключ — это 1961, а секретный — 37 и 53.

Открытый ключ используется, чтобы зашифровать сообщение, а секретный — чтобы расшифровать.

Как-то RSA выделила 1000 $ в качестве приза тому, кто найдет два пятидесятизначных делителя числа:

Недостатки способа шифрования «Энигма»

Главным минусом шифра «Энигма» было то, что буква никогда не могла быть закодирована так, как она есть. Другими словами, A никогда не будет закодирована как A. Это был огромный недостаток в коде Enigma, потому что он дал часть информации, которую можно было использовать для дешифрования сообщений. Если бы дешифровщики могли угадать слово или фразу, которые, вероятно, появятся в сообщении, эта информация помогла бы им, чтобы разгадать код. Поскольку немцы всегда отправляли сообщение о погоде в начале и обычно включали в конце сообщения фразу со своим традиционным приветствием, были найдены фразы, которые приблизили дешифровщиков к разгадке.

Другие интересные вещи

В общей сложности я провел в Блетчли-парке пять часов. Этого едва-едва хватило, чтобы хорошенько посмотреть центральную часть и мельком — все остальное. Было настолько интересно, что я даже не заметил, как прошло время, пока ноги не начали ныть и проситься обратно — если не в гостиницу, то хотя бы в электричку.

А помимо домиков, полутемных кабинетов, восстановленных «бомб» и длинных стендов с сопроводительными текстами, было на что посмотреть. Про зал, посвященный шпионажу во время Первой мировой, я уже упомянул, был еще зал про дешифровку «Лоренца» и создание компьютера Colossus. Кстати, в музее я обнаружил и сам «Колосс», вернее ту часть, что успели построить реконструкторы.

Самых выносливых уже за территорией Блетчли-парка ждет небольшой музей компьютерной истории, где можно ознакомиться с тем, как вычислительная техника развивалась после Тьюринга. Туда я тоже заглянул, но прошел уже быстрым шагом. На BBC Micro и «Спектрумы» я уже насмотрелся в других местах — вы можете сделать это, например, на питерском фестивале Chaos Constructions. А вот живую «бомбу» где попало не встретишь.

Ролики

Ролики Enigma-G (вверху: правая сторона; внизу: левая сторона)

Как и во всех моделях Enigma, сердцем машины является набор роликов. В Enigma-G он состоит из трех барабанов, которые помечены римскими цифрами (I, II и III) и вращаются во время шифрования. Диаметр роликов 85 мм немного меньше, чем у других моделей (100 мм). Благодаря этому конструкция катков также несколько отличается от других моделей. Контактные штифты с правой стороны расположены на двух концентрических кругах зигзагообразно, а контактные поверхности с левой стороны роликов соответственно не круглые, а скорее каплевидные  (рисунок) . Ролики могут быть расположены ( переставлены ) пользователем в любом порядке . С тремя роликами получается 3 · 2 · 1, то есть шесть возможных . Кроме того, есть FM, который нельзя выбрать, но он тоже вращается.

Начальное положение VHF и трех роликов может быть свободно установлено пользователем. Для этого есть 26 вариантов, соответствующих . Всего получается 26 4 , то есть 456 976 возможных начальных позиций от AAAA до ZZZZ.

Чтобы добиться максимально «неравномерного» вращения роликов, количество переходных выемок было резко увеличено по сравнению с роликами моделей Enigma, используемых Вермахтом . Были приняты меры , чтобы не излишне уменьшают на длину периода от 26 4 , т.е. 456,976, и число переноса вырезами из трех роликов выбран , чтобы быть относительно простой друг к другу и быть 26, а именно 17, 15 и 11 выемки для роликов I, II и III соответственно.

Электропроводка катков отличалась от проводов всех других моделей, а также не была единообразной в пределах семейства моделей. Предположительно, на некоторых машинах проводка роликового агрегата менялась время от времени даже во время их эксплуатации. Это служило для лучшей защиты различных ключевых групп и агентов друг от друга и для повышения безопасности связи. Подробнее о проводке ролика и выемках переноса см. Также: Ролики Enigma .

«Энигма»: описание, составные части

Enigma — переносная портативная шифровальная машина. 

Размер — 27 х 23 х 13 см

Вес — примерно 5 кг  

Составные части:

  • панель механических клавиш;
  • 3,5 или более вращающихся роторных диска;
  • рефлектор;
  • электронные схемы;
  • коммуникационная панель;
  • панель с индикаторами (лампочками). 

Суть шифрования в том, чтобы отправить засекреченный текст в виде запутанного набора символов. Прогнав это сообщение через шифровальную машину, радист получает на выходе понятные послания. 

Работа с Энигмой весьма проста. В машину вводится текст, который необходимо зашифровать. С помощью электрических импульсов кодируются необходимые слова. Принимающая Энигма получает текст и расшифровывает его с помощью постоянно меняющегося ключа. В итоге радист-шифровальщик получает вразумительный текст.

Enigma использует алгоритм подстановочного шифра. Это простой способ закодировать текст. Также просто его и расшифровать. Но шифр Энигмы считается одним из самых сложных до сих пор. 

Ключ к расшифровке сообщений

После выхода из отражателя сообщение отправляется через роторы в обратном направлении, при этом применяется обратная замена. После этого символ A превратится в U. На каждом роторе, на ободе, есть алфавит, поэтому оператор может задавать определенную последовательность. Например, оператор может повернуть первый ротор, чтобы отобразить D, повернуть второй, чтобы отобразить K, и повернуть третий слот так, чтобы отобразить P. При первоначальном наборе из трех чисел или букв, отображаемых на машине отправителя, когда он начал вводить сообщение, получатель может декодировать его, установив на свою идентичную машину Enigma начальные настройки отправителя.

Шифровальные машины Энигма, Лоренц и передача секретных сообщений сегодня

Здесь показано какие места у вас уже разблокированы и сколько кодов Энигмы придется потратить на остальные. Выбирайте желаемую локацию и приступайте к расшифровке. Для этого вам придется решить небольшую головоломку за ограниченное время. Если видите, что не успеваете — жмите кнопку назад. Это позволит вам выйти в меню без потери кода.

Посмотрите на скриншот ниже, перед вами два блока с рисунками. Верхний блок показывает, что именно нужно собрать. Активный символ подсвечивается и дополнительно обводится рамкой. В данном случае дешифровка будет состоять из семи этапов. Ваша задача — собрать такую же картинку по центру нижнего блока. Верхний и нижний ряд в нем двигаются независимо друг от друга.

Собрав все семь символов, вы разблокируете местоположение обер-коменданта. Чтобы отправиться к нему в гости, подойдите к карте. Она стоит в том же помещении, что и Энигма, буквально в двух шагах. Начните миссию и смело идите подрывать позиции нацистского режима. За убийства обер-комендантов вы получите их посмертные карточки. Добыв все 16 штук, откроете достижение Жуткий Билли.

6.1 История появления «Энигмы»

Энимгма (лат. Enigma — загадка)— портативная шифровальная машина, использовавшаяся для шифрования и дешифрования секретных сообщений. Более точно, Энигма — целое семейство электромеханических роторных машин, применявшихся с20-х годов XX века.

Энигма использовалась в коммерческих целях, а также в военных и государственных службах во многих странах мира, но наибольшее распространение получила в нацистской Германии во время Второй мировой войны. Именно Энигма вермахта (Wehrmacht Enigma)— немецкая военная модель — чаще всего является предметом дискуссий. Эта машина получила дурную славу, потому что криптоаналитики Антигитлеровской коалиции смогли расшифровать большое количество сообщений, зашифрованных с её помощью. Специально для этих целей была создана машина с кодовым названием Bombe, оказавшая значительное содействие Антигитлеровской коалиции в войне. Вся информация, полученная криптоанализом с её помощью, имела кодовое название ULTRA.

Хотя с точки зрения криптографии шифр Энигмы и был слаб, но на практике только сочетание этого фактора с другими (такими как ошибки операторов, процедурные изъяны, заведомо известный текст сообщений (например при передаче метеосводок), захваты экземпляров Энигмы и шифровальных книг) позволило взломщикам разгадывать шифры и читать сообщения.

Было выпущено, по приблизительным оценкам, около 100 000 экземпляров шифровальных машин Энигма. Как и другие роторные машины, Энигма состояла из комбинации механических и электрических систем. Механическая часть включала в себя клавиатуру, набор вращающихся дисков (роторов), которые были расположены вдоль вала и прилегали к нему, и ступенчатого механизма, двигающего один или более роторов при каждом нажатии клавиши.

Конкретный механизм работы мог быть разным, но общий принцип был таков: при каждом нажатии клавиши самый правый ротор сдвигается на одну позицию, а при определённых условиях сдвигаются и другие роторы. Движение роторов приводит к различным криптографическим преобразованиям при каждом следующем нажатии клавиши на клавиатуре. Механические части двигались, замыкая контакты и образуя меняющийся электрический контур (то есть, фактически, сам процесс шифрования букв реализовывался электрически). При нажатии клавиши клавиатуры контур замыкался, ток проходил через различные цепи и в итоге включал одну из набора лампочек, и отображавшую искомую букву кода (например: при шифровке сообщения, начинающегося с ANX…, оператор вначале нажимал кнопку A— загоралась лампочка Z— то есть Z и становилась первой буквой криптограммы; далее оператор нажимал N и продолжал шифрование таким же образом далее).

Для объяснения принципа работы машины приведена диаграмма выше. Диаграмма упрощена: на самом деле механизм состоял из 26 лампочек, клавиш, разъёмов и электрических схем внутри роторов. Ток шёл из батареи (1) через переключатель (2) в коммутационную панель (3). Коммутационная панель позволяла перекоммутировать соединения между клавиатурой (2) и неподвижным входным колесом (4). Далее ток проходил через разъём (3), в данном примере неиспользуемый, входное колесо (4) и схему соединений трёх (в армейской модели) или четырёх (в военно-морской модели) роторов (5) и входил в рефлектор (6). Рефлектор возвращал ток обратно, через роторы и входное колесо, но уже по другому пути, далее через разъём «S», соединённый с разъёмом «D», через другой переключатель (9), и зажигалась лампочка. Таким образом, постоянное изменением электрической цепи, через которую шёл ток, вследствие вращения роторов позволяло реализовать многоалфавитный шифр подстановки, что давало высокую, для того времени, устойчивость шифра.

шрифт информация криптография энигма

Криптография для всех

В 1949 году Клод Шеннон пишет работу «Теория связи в секретных системах», и криптография окончательно переходит в сферу математики. К концу 1960-х роторные шифровальные системы заменяются более совершенными блочными, которые предполагали обязательное применение цифровых электронных устройств. В 1967 году ученый Дэвид Кан издал популярную книгу «Взломщики кодов», которая вызвала большой интерес к криптографии.  

С распространением компьютеров криптография выходит на новый уровень. Мощности новых устройств позволяют создавать на порядки более сложные шифры. Шифр или код становится языком общения между компьютерами, а криптография становится полноценной гражданской отраслью. В 1978 году разрабатывается стандарт шифрования DES, который стал основой для многих современных криптографических алгоритмов. 

Сфера использования криптографии расширяется, при этом власти различных стран пытаются удержать контроль над использованием шифров. Разработки криптографов засекречиваются, от производителей шифровальных машин требуют оставлять в продуктах «черные ходы» для доступа спецслужб. 

Параллельно независимые криптоаналитики разрабатывают способы шифрования, которыми могли бы пользоваться все желающие – так называемую открытую криптографию. Особенно актуально это стало с развитием интернета, где вопрос конфиденциальности информации встал очень остро. Первой криптосистемой с открытым ключом считается созданный в 1977 году алгоритм RSA, название которого является акронимом имен создателей – Риверста, Шамира и Адельмана. А в 1991 году американский программист Филипп Циммерман разрабатывает популярнейший пакет PGP с открытым исходным кодом для шифрования электронной почты.

Распространение доступного интернета по всему миру невозможно представить без криптографии. С появлением мессенджеров, социальных сетей, онлайн-магазинов и сайтов государственных услуг передача персональной информации в сети происходит без остановки и в огромных количествах. Сегодня мы сталкиваемся с криптографией ежедневно, когда вводим пароль от почтового сервиса, узнаем статус покупки онлайн или делаем денежный перевод через приложение банка. Криптография прошла гигантский путь от простых шифров древности к сложнейшим криптосистемам. Будущее этой науки творится на наших глазах – очередная революция в шифровании произойдет с появлением квантовых суперкомпьютеров, разработка которых уже ведется.

Как работает шифровальная машина «Энигма». Видео

  • 1-04-2019, 17:29
  • |
  • оценили: 4
  • |
  • просмотров: 1 900
  • |
  • ошибка в тексте
  • |
  • ‹ вернуться назад

Переносная шифровальная машина «Энигма» использовалась для шифрования и расшифрования секретных сообщений в нацистской Германии во время Второй мировой войны.Enigma (от нем. Änigma — загадка) использовалась в коммерческих целях, а также военными службами во многих странах мира, но наибольшее распространение получила в нацистской Германии во время Второй мировой войны. Именно германская военная модель чаще всего является предметом дискуссий.
Шифровальная машина Enigma
Впервые шифр «Энигмы» удалось дешифровать в польском Бюро шифров в декабре 1932 года. Четверо сотрудников разведки, Мариан Реевский, Ежи Ружицкий, Генрих Зыгальский и Иоганн Ревклид с помощью данных французской разведки, математической теории и методов обратной разработки смогли разработать специальное устройство для дешифровки закодированных сообщений, которое назвали криптологической бомбой. После этого немецкие инженеры усложнили устройство «Энигмы» и в 1938 году выпустили обновленную версию, для дешифровки которой требовалось построить более сложные механизмы.
«Turing Bombe»
Во время Второй мировой войны в Англии для расшифровки сообщений, зашифрованных с помощью «Энигмы», была создана машина с кодовым названием «Turing Bombe», оказавшая значительную помощь антигитлеровской коалиции. Вся информация, полученная криптоанализом с ее помощью, имела кодовое название «Ultra». Утверждалось, что это достижение явилось решающим фактором в победе союзников.Главной целью «Бомбы» было нахождение ежедневных настроек машины «Энигма» на различных немецких военных соединениях: в частности, позиции роторов. Позиции роторов определяют ключ зашифрованного сообщения.

Теоретическую часть работы выполнил Алан Тьюринг. Его работы по криптографическому анализу алгоритма, реализованного в шифровальной машине «Энигма», основывались на более раннем криптоанализе предыдущих версий этой машины, которые были выполнены в 1938 году польским криптоаналитиком Марианом Реевским. Принцип работы разработанного Тьюрингом дешифратора состоял в переборе возможных вариантов ключа шифра и попыток расшифровки текста, если была известна структура дешифруемого сообщения или часть открытого текста.

Несмотря на то, что с точки зрения современной криптографии шифр «Энигмы» был слаб, на практике только сочетание с такими факторами как ошибки операторов, процедурные изъяны, заведомо известный текст сообщений, позволили взломщикам шифров разгадывать шифры «Энигмы» и читать сообщения.В 2014 году вышла историческая драма «Игра в имитацию» (англ. The Imitation Game) о криптографе военного времени Алане Тьюринге. Главную роль в фильме исполнил Бенедикт Камбербэтч.

ТЕГИ: iPhonesia.ru
Присоединяйтесь к нам во , , или через RSS-канал.

  • 60

Как находить обер-командоров

Как только вы получите доступ к машине «Энигмы», вам удастся достать данные о том, где находятся обер-командоры. Они являются высокопоставленными офицерами, которые управляют крупными вражескими группами и основными объектами в Соединенных Штатах Америки. Благодаря их убийству вы сможете ослабить нацистский режим в США.

Раскрыв местоположение командующего, направляйтесь к тактической карте, находящейся посерединке этого помещения и начните выполнение задания по его ликвидации. В этих второстепенных миссиях вы попадете в те же локации, где бывали ранее. Впрочем, без изменений все же не обойдется.

Отметим, что вам удастся отыскать коллекционные предметы, которые вы могли упустить при прошлом прохождении уровня. После отправления обер-командора на тот свет игра выдаст вам его карточку. К тому же вы сможете заполучить ценную экипировку.

Эпоха шифровальных машин

Промышленная революция не обошла вниманием и криптографию. Около 1790 года один из отцов – основателей США Томас Джефферсон создал дисковый шифр, прозванный позже цилиндром Джефферсона

Этот прибор, основанный на роторной системе, позволил автоматизировать процесс шифрования и стал первым криптоустройством Нового времени. 


Шифровальный цилиндр Томаса Джефферсона

Большое влияние на шифровальное дело оказало изобретение телеграфа. Прежние шифры вмиг перестали работать, при этом потребность в качественном шифровании только возрастала в связи с чередой крупных военных конфликтов. В XIX-XX веках основные импульсы для развития криптографии давала именно военная сфера. С 1854 года британские военные применяют шифр Плейфера, в основе которого – шифрование биграмм, или пар символов. Этот шифр использовался до начала Второй мировой войны. 

Во Второй мировой войне противники уже использовали мобильные электромеханические шифраторы, шифры которых считались нераскрываемыми. Устройства были роторными или на цевочных дисках. К первым относилась знаменитая машина «Энигма», которой пользовались нацисты, ко вторым – американская машина M-209. 

Принцип работы «Энигмы» заключался в следующем: при каждом нажатии на клавишу с буквой алфавита в движение приходили один или несколько роторов. Буква изменялась несколько раз по принципу шифра Цезаря, и в окошке выдавался результат. Шифры «Энигмы» считались самыми стойкими для взлома, так как количество ее комбинаций достигало 15 квадриллионов. Однако код «Энигмы» все же был расшифрован, сперва польскими криптографами в 1932 году, а затем английским ученым Аланом Тьюрингом, создавшим машину для расшифровки сообщений «Энигмы» под названием «Бомба». Комплекс из 210 таких машин позволял англичанам расшифровывать до 3 тыс. военных сообщений нацистов в сутки и внес большой вклад в победу союзников. 


Роторы «Энигмы» в собранном состоянии. Фото: wikimedia.org

О советских шифровальных машинах известно мало, так как до последнего времени информация о них была засекречена. Например, до 1990-х годов в СССР и союзных странах использовалась роторная шифровальная машина «Фиалка». В отличие от «Энигмы» и других устройств, в ней использовались 10 роторов, а информация выводилась на бумажную ленту.
 

Немцы усовершенствовали Enigma

В какой-то момент немецкие шифровальщики обнаружили и устранили слабость двойного шифрования. Тогда британцам потребовалось более продвинутое решение, и к работе подключился Тьюринг и его команда.

Используя информацию, предоставленную поляками, Тьюринг начал взламывать сообщения Enigma с помощью своего собственного «компьютера».

Его методы основывались на предположении, что в каждом сообщении содержится шпаргалка – известный фрагмент немецкого открытого текста в знакомом месте сообщения.

В одном примере это был прогноз погоды в Атлантике, который каждый день записывался в одном и том же формате. Оборудование для определения местоположения на прослушивающих станциях позволило взломщикам кода определить, откуда исходит сообщение, и, если оно совпадает с расположением метеостанции, вполне вероятно, что слово «wettervorhersage» (прогноз погоды) будет присутствовать в каждом сообщении.

Другой любопытной подсказкой для Тьюринга была неспособность Enigma закодировать букву как саму себя. То есть S никогда не могла быть S.

Машина Тьюринга сегодня стоит 320 миллионов рублей

«Бомбы» были 7 футов в ширину, 6 футов 6 дюймов в высоту и весили тонну, в буквальном смысле. У них было 12 миль проводов(!) и 97 000 различных деталей.

Прототип декодера был построен за 100 000 фунтов стерлингов, что сегодня составляет около 4 миллионов фунтов стерлингов. Почти 320 миллионов рублей по текущему курсу!

По сути, бомба Тьюринга представляла собой электромеханическую машину, состоящую из 36 различных машин Enigma, каждая из которых содержала точную внутреннюю проводку немецкого аналога.

Когда «Бомба» включена, каждой из загадок выделяется пара букв из полученного текста шпаргалки (например, когда D становится T в угаданном слове).

Каждый из трёх роторов движется со скоростью, имитирующей саму Enigma, проверяя приблизительно 17 500 возможных позиций, пока не находится совпадение.

Схема шифрования

Схема шифрования на Энигме была похожа на телефонный коммуникатор тех времен. На панели закреплены 10 проводов с двумя концами, каждый из которых можно было подключить к разъему. 

Такие провода соединяли клавиши одного символа с одной стороны провода и слот с кодовым символом, с другой. Таким образом, две парные буквы заменяли друг друга, что обеспечивало дополнительное шифрование.

Кодирование сообщений

Итак, каждый ротор машины имел 26 положений (число символов в латинском алфавите). Одновременно можно было использовать три ротора, каждый с уникальным путем контактов между парой букв и разной скоростью вращения. Например, один из роторов после кодирования символа мог проворачиваться на три шага вперед, а другой ротор — только на два. Эти роторы можно было менять, выбирая из нескольких наборов. В итоге, вариантов расшифровки может быть тысячи.

«Ключ» к расшифровке также состоит из нескольких наборов роторов с разными связями между парами букв и с различными схемами передвижения после нажатия на клавишу. Например, при заданных условиях движения роторов слева направо, радисту необходимо зашифровать букву «А». Три ротора заменяют «А» по-разному. Пройдя через третий ротор в закодированном тексте «А» станет «В», пройдя через второй ротор — «В» меняется на «J». Соответственно, первый ротор «J» преобразуется в «Z».

Следующий этап шифрования после роторов — это прохождение через отражатель. В отражателе символы текста проходят дополнительную замену.

Последним этапом кодирования послания — отправка сообщения через роторы в обратном порядке. 

Расшифровать такое сообщение можно только на такой же машине Энигма и с теми же настройками, что у отправителя.

Недостатки шифрования сообщений на «Энигме»

Большим недостатком шифровальной машины Энигма, можно сказать, стала ее сложность кодирования. При кодировке текста буква не шифровалась, как она есть. Например, буква «R» никогда не могла стать буквой «R». Зная это, противник получал часть информации, необходимой для расшифровки.

Вторым минусом являлось то, что Энигма шифровала первые три буквы повторно. Это позволяло найти шаблоны шифра. 

Также недостатком являлась сама неосторожность немцев. Составляя текст сообщений, они начинали его словами о погоде и заканчивали традиционным приветствием. . В итоге, дешифровальщик, опираясь на эти знания и отгадав пару слов, мог подобрать ключ кодировки. 

В итоге, дешифровальщик, опираясь на эти знания и отгадав пару слов, мог подобрать ключ кодировки. 

Как выглядела машина Bombe

Большинство машин Enigma имели три ротора, и каждый из симуляторов Enigma в Bombe имел три барабана, по одному для каждого ротора. Барабаны «Бомбе» были закодированы цветом, чтобы соответствовать тому ротору, который они имитировали. Барабаны были устроены так, что верхний из трех моделировал левый ротор Enigma, средний имитировал средний ротор, а нижний — правый ротор. Для каждого полного вращения верхних барабанов средние барабаны были увеличены на одну позицию, то же самое происходило со средним и нижним барабаном, в результате чего общее количество позиций составляло 17 576 позиций машины Enigma с 3 роторами.

Тарабарщина, цифирь и другие шифры

Работы арабских ученых способствовали появлению полиалфавитных шифров, более стойких к расшифровке, в которых использовались сразу несколько алфавитов. Однако люди Средневековья продолжали пользоваться простыми шифрами, основанными на замене букв другими буквами или цифрами, неправильном написании букв и т.д. В Средние века в Европе считалось, что криптография была тесно связана с магией и каббалой.    

Интересно, что в Древней Руси тоже были свои способы тайнописи, например литорея, которая делилась на простую и мудрую. В мудрой версии шифра некоторые буквы заменялись точками, палками или кругами. В простой литорее, которая еще называлась тарабарской грамотой, все согласные буквы кириллицы располагались в два ряда. Зашифровывали письмо, заменяя буквы одного ряда буквами другого. 

Еще одним известным шифром Древней Руси была цифирь, когда буквы, слоги и слова заменялись цифрами. Иногда для усложнения в шифр добавлялись математические действия, и было непросто разгадать подобную загадку: «Десятерица сугубая и пятерица четверицею, единица четверицею сугубо и десятерица дващи». 


Тайнопись XVI века, в основе которой числовые значения церковнославянских букв

В эпоху Возрождения криптография переживает подъем. Начинается период формальной криптографии, связанный с появлением формализованных, более надежных шифров. Над некоторыми загадками ученых Ренессанса криптографы последующих лет бились столетиями. 

Около 1466 года итальянский ученый Леон Альберти изобретает шифровальный диск, состоящий из двух частей: внешней и внутренней. На неподвижном внешнем диске был написан алфавит и цифры. Внутренний подвижный диск также содержал буквы и цифры в другом порядке и являлся ключом к шифру. Для шифрования нужно было найти нужную букву текста на внешнем диске и заменить ее на букву на внутреннем, стоящую под ней. После этого внутренний диск сдвигался, и новая буква зашифровывалась уже с новой позиции. Таким образом, шифр Альберти стал одним из первых шифров многоалфавитной замены, основанных на принципе комбинаторики. Кроме того, Леон Альберти написал одну из первых научных работ по криптографии − «Трактат о шифрах». 


Шифровальный диск Леона Альберти

Здесь стоит упомянуть такое явление, как стеганография, которому в работе Альберти также было уделено внимание. Если с помощью шифра пытаются утаить смысл информации, то стеганография позволяет скрыть сам факт передачи или хранения данных

То есть текст, спрятанный с помощью этого метода, вы примите за картинку, кулинарный рецепт, список покупок или, например, кроссворд. Или вообще не увидите его, если он будет написан молоком, лимонным соком или с помощью особых чернил. Часто методы стеганографии и криптографии объединялись в одном послании. 

Прорывом в криптографии стала книга «Полиграфия» аббата Иоганеса Тритемия 1518 года, рассказывающая в том числе о шифрах с полиалфавитной заменой. Самым известным шифровальщиком XVI века считается дипломат и алхимик из Франции Блез де Виженер, придумавший абсолютно стойкий шифр, в котором использовалось 26 алфавитов, а порядок использования шифра определялся знанием пароля. Можно сказать, что шифр Виженера представлял собой комбинацию нескольких уже упоминавшихся шифров Цезаря.